

DPP No. 53

Total Marks: 27

Max. Time: 28 min.

Topic: Straight Lines

Type of Questions		M.M	., M in.
Single choice Objective (no negative marking) Q.1,2,3	(3 marks, 3 min.)	[6,	6]
Multiple choice objective (no negative marking) Q.4	(5 marks, 4 min.)	[5,	4]
Subjective Questions (no negative marking) Q.5,6	(4 marks, 5 min.)	[8,	10]
Match the Following (no negative marking) Q.7	(8 marks, 8 min.)	[8,	8]

- A is a point on either of two rays $y + \sqrt{3}|x| = 2$ at a distance of $\frac{4}{\sqrt{3}}$ units from their point of intersection. The co–ordinates of the foot of perpendicular from A on the bisector of the angle between them are 1.
 - (A) $\left(-\frac{2}{\sqrt{3}},2\right)$
- (C) $\left(\frac{2}{\sqrt{3}}, 2\right)$ (D) (0, 4)
- The base BC of a Δ ABC is bisected at the point (p, q) & the equation to the side AB & AC are 2. px + qy = 1 & qx + py = 1. The equation of the median through A is:
 - (A) (p-2q)x + (q-2p)y + 1 = 0
 - (B) (p + q) (x + y) 2 = 0
 - (C) $(2pq 1) (px + qy 1) = (p^2 + q^2 1) (qx + py 1)$
 - (D) none of these
- If the line y = x cuts the curve $x^3 + 3y^3 30xy + 72x 55 = 0$ in points A, B and C, then the value of 3. $\frac{4\sqrt{2}}{55}$ OA.OB.OC (where O is the origin), is
 - (A) 55
- (B) $\frac{1}{4\sqrt{2}}$

equidistant from all the three lines are

- (C) 2
- (D) 4
- The equation of lines passing through point of intersection of lines 3x y 20 = 0 and x 2y 5 = 0, 4. which are at a distance of 5 units from origin, is/are:
 - (A) 4x + 3y = 25
- (B) 3x 4y = 25
- (C) 4x 3y = 25
- (D) 3x + 4y = 25
- A circle with centre in the first quadrant is tangent to y = x + 10, y = x 6, and the y-axis. Let (h, k) be 5. the centre of the circle. If the value of $(h + k) = a + b\sqrt{a}$ where $(a, b \in Q)$, find the value of a + b.
- If the variable line 3x 4y + k = 0 lies between the circles $x^2 + y^2 2x 2y + 1 = 0$ and 6. $x^2 + y^2 - 16x - 2y + 61 = 0$ without intersecting or touching either circle, then the range of k is (a, b) where $a, b \in I$. Find the value of (b - a)
- 7. Match the column

Colun	nn – I	Colur	nn – II
(A)	Minimum possible number of positive roots of	(p)	2
	$x^2 - (1 + b) x + b - 2 = 0$ is $(b \in R)$		
(B)	In a \triangle ABC, co-ordinates of orthocentre, centroid and vertex A are	(p)	0
	(3, 2), (3, 1) and (1, 2) respectively. Then x-coordinate of vertex B is		
(C)	If $\log_x \log_3 \log_x(2x^2) = 0$, then x =	(r)	1
(D)	If there are three non concurrent and non parallel lines,	(s)	4
	then number of points which are		

Answers Key

- **1.** (B)
- **2.** (C)
- **3.** (D)
- **4.** (C)(D)
- **5.** 10
- **6.** 6
- 7. (A) \rightarrow (r), (B) \rightarrow (s), (C) \rightarrow (p), (D) \rightarrow (s)

